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Abstract. PT (= parity times time-reversal) symmetry of complex Hamiltonians with real
spectra is usually interpreted as a weaker mathematical substitute for Hermiticity. Perhaps
an equally important role is played by the related strengthened analyticity assumptions. In a
constructive illustration we complexify a few potentials solvable only in s-wave. Then we continue
their domain from the semi-axis to the whole axis and obtain new exactly solvable models. Their
energies turn out to be real as expected. The new one-dimensional spectra themselves differ quite
significantly from their s-wave predecessors.

1. Introduction

Our mathematical understanding of many physical systems can become drastically simplified
after their suitable complexification. This is true, first of all, in the study of resonances [1]
and of several other quantum scattering phenomena [2]. Recently, the idea of working in a
complexified phase space for bound states [3] re-entered the scene with a new enthusiasm
supported by an immediate relevance of the related break-down of parity P in certain field
theories [4].

In the mathematically more accessible quantum mechanical models certain exceptional
complex interactions with PT symmetry happen to become strictly equivalent to a real potential
after a supersymmetric [5] or integral, Fourier-like [6] transformation. For other models,
the analysis of the related purely real spectra of energies has been performed by several
techniques. One may recollect, e.g., the most straightforward numerical experiments [7],
semi-classical approximants [8] and the so-called delta expansions [9]. Resummations of
divergent perturbation series [10] and the so-called exact WKB method [11] also offered
several Hamiltonians for which the spectra of energies En were proved to be strictly real.

One of the most immediate sources of information about the possible connection or
correlation between the absence of a decay Im En = 0 and the PT -symmetry H = PT HPT
itself is provided by the exactly solvable models in one dimension. Step by step, there
were proposed the PT -symmetric versions of the harmonic oscillator [8], of the asymmetric
Morse interaction [12], of the asymptotically symmetric (sometimes called ‘scarf’) hyperbolic
oscillator [13] and of its asymptotically asymmetric but locally not too dissimilar (also known
as Rosen–Morse) alternative [14]. Before complexification, all of them belong among the
so-called shape invariant potentials (cf the review [15]), so some of their properties can be
clarified using the language of supersymmetry [16].
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On the basis of numerical experience [9] current attention is exclusively paid to the forces
V (x) which are analytic in x. An extremely interesting byproduct of this point of view can
be found in a transition to more dimensions for quartic (i.e. unsolvable) oscillators [6] and
for the central and exactly solvable PT -symmetrized harmonic oscillator [17] and Coulomb
problem [18]. Within the set of similar forces with a centrifugal-like singularity there still exist
a few models without a clear interpretation. After a glimpse of table 4.1 of the review [15] we
immediately discover two of them, namely, the Eckart model

V (Eck)(r) = A(A− 1)

sinh2 r
− 2B

cosh x

sinh r
(1)

and the generalized Pöschl–Teller potential

V (PT)(r) = −A(A + 1)

cosh2 r
+
B(B − 1)

sinh2 r
. (2)

In the standard interpretation [2], both these s-wave models are only partially, incompletely
solvable and, in this sense, lie somewhere in a ‘no-man’s land’. This was the main source of our
present inspiration. We see no reason why these two interactions should not be appropriately
continued to the whole line and classified, afterwards, as the two new or ‘forgotten’ exactly
solvable PT -symmetric models. This will be done in detail in sections 2 and 3 below.

We have to remind the reader that the latter force (2) may be often found in the current
literature in its alternative form V (GPT)(r) = (u + v cosh 2r)/sinh2 2r [15] or in the special
form known as the Hulthén potential [2]. The former correspondence is mediated by the trivial
re-scaling of the axis of coordinates by a factor of two. In the present context, the latter,
much less trivial relationship deserves more explicit attention. Its thorough discussion will be
included here, therefore, in section 4. A few further relevant overall comments may be found
in our summary and final discussion in section 5.

2. PT -regularization and Eckart oscillator

From the purely historical point of view the loss of Hermiticity in the domain of complex
couplings proved to be more than compensated by the new insight into the solutions of one of
the most popular unsolvable modelsV (x) = ωx2 +λx4 [19]. Today, its spectrum is understood
as a single multi-sheeted analytic function of the complex coupling constant λ ∈ C. The same
idea applies to the set of resonances in the cubic well V (x) = ωx2 + λx3 although a careful
analytic continuation must be also performed in the coordinate x itself [7]. These observations
guided the semi-classical and numerical studies of the forces V (δ)(x) = ωx2 + gx2(ix)δ

containing a variable real exponent δ [9]. The related PT -symmetric quantum mechanics
with its new perturbation series [20] as well as quasi-classical approximation schemes [11]
and matrix-truncation methods [21] works with the globally, asymptotically deformed paths
of integration in the related Schrödinger equation[

− d2

dx2
+ V (x)

]
ψ(x) = Eψ(x). (3)

The δ = 2, quartic anharmonic oscillator of [22] exemplifies these systems, which need not
remain integrable on the real line. Its asymptotic integrability and decrease of wavefunctions
is only recovered after we bend both our coordinate semi-axes downwards and replace

{x � 1} −→ {x = �e−iϕ} {x � −1} −→ {x = −�eiϕ}
beyond a certain distance �0 � 1 and within certain bounds upon ϕ ∈ (0, π/3). The further
growth of δ beyond δ = 2 would make both the asymptotical ϕ-wedges shrink and rotate
downwards in the complex plane.
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Let us defer the discussion of the similar cases to our last section 4 below. Returning
now just to our first two examples (1) and (2) we may notice that both of them may be
characterized by a ‘weak’, ϕ = 0 option. Globally they do not leave the real axis of x at
all. Such a simplification proves most natural in the δ→∞ regular model of [23], admitting
the most natural physical interpretation of the real physical coordinates after all. The related
PT -symmetrized oscillators need not necessarily differ from their Hermitian counterparts too
much. One can hope to encounter just slight modifications of the formulae available, e.g., in the
factorization context [24] and in its Lie-algebraic [25], operator [26] or supersymmetric [27]
re-interpretations.

Equally straightforward innovations may be expected in the domain of our singular
forces (1) and (2). One can simply avoid their isolated singularities by a local deformation
of the integration path. In this way the strong repulsion at the origin (so popular in some
phenomenological models [28] and fully impenetrable in one dimension) becomes readily
tractable via a suitable choice of the cut.

2.1. Terminating solutions revisited

Once we pay attention to the real s-wave potential (1) with the strongly singular core, usually
attributed to Eckart [29], we have to keep in mind that this Hermitian model is solvable on the
half-line only, with r ∈ (0,∞) and, conventionally, A > 1

2 and B > A2. Its fixed value of
the angular momentum � = 0 is in effect a non-locality, which lowers its practical relevance
in three and more dimensions.

As already mentioned, the local deformation of the integration path enables us to forget
about the strong singularity at the origin. We may admit the presence of the so-called irregular
components in ψ(r) ∼ r1−A near r = 0. They would be, of course, unphysical in the usual
formalism [30]. Here, on the contrary, we continue r → x with x ∈ (−∞,∞) and encounter
new possibilities.

In the new perspective we have to re-analyse the whole Schrödinger equation anew. Our
choice of appropriate variables

ψ(x) = (y − 1)u(y + 1)vϕ

(
1− y

2

)
y = cosh x

sinh x
= 1− 2z

is dictated by the arguments of Lévai [27], and the consequent PT -symmetry considerations
require that we use the purely imaginary couplings B = iβ. Then we insert V (Eck)(x) in
equation (3) and our change of variables leads to its new form

z(1− z)ϕ′′(z) + [c − (a + b + 1)z]ϕ′(z)− abϕ(z) = 0 (4)

where

c = 1 + 2u a + b = 2u + 2v + 1 ab = (u + v)(u + v + 1) + A(1− A) (5)

and

4v2 = 2B − E 4u2 = −2B − E. (6)

Our differential equation is of the Gauss hypergeometric type and its general solution is well
known [31],

ϕ(z) = C1 · 2F1(a, b; c; z) + C2 · z1−c
2F1(a + 1− c, b + 1− c; 2− c; z). (7)

Besides the obvious relevance of such an exceptional solvability of a model with a strong
singularity in quantum mechanics, an independent encouragement of its study is provided by
its methodical appeal in the context of field theory, especially in connection with the so-called
Klauder phenomenon [32].



4564 M Znojil

2.2. Asymptotic boundary conditions

Technically, the first thing we notice is that our parameters a and b are merely functions of the
sum u + v and vice versa, u + v = (a + b− 1)/2. The immediate insertion then gives the rule
(a − b)2 = (2A− 1)2 and we may eliminate

a = b ± (2A− 1). (8)

We assume that our solutions obey the standard oscillation theorems [33] and become
compatible with the boundary conditions ψ(±∞) = 0 in equation (3) at a discrete set of
energies, i.e. if and only if the infinite series 2F1 terminate. Due to the complete a ↔ b

symmetry, we only have to distinguish between the two possible choices of C2 = 0 and
C1 = 0.

In the former case with the convenient b = −N (= non-positive integer) the resulting
numbers a + b and u + v both prove to be real. Using the definition of B the difference
u − v = −iβ/(u + v) comes out purely imaginary. The related terminating wavefunction
series (7), i.e.

ψ(x) =
(

1

sinh x

)u+v

e(v−u)x · ϕ[z(x)] (9)

is asymptotically normalizable if and only if u + v > 0. This condition fixes the sign in
equation (8) and gives the explicit values of all the necessary parameters,

a = 2A−N − 1 u + v = A−N − 1 u− v = −i
β

A−N − 1
. (10)

For all the non-negative integers N � Nmax < A − 1 the spectrum of energies is obtained in
the following closed form:

E = −1

2
(u2 + v2) = −(A−N − 1)2 +

β2

(A−N − 1)2
N = 0, 1, . . . , Nmax. (11)

The normalizable wavefunctions become proportional to Jacobi polynomials,

ϕ[z(x)] = const · P (u/2,v/2)
N (coth x). (12)

We have shortly to return to the second option with C1 = 0 in equation (7). Curiously
enough, this does not bring us anything new. Although the second Gauss series terminates at
a different b = c − 1 − N , the factor z1−c changes the asymptotics and one only reproduces
the former solution. All the differences prove purely formal. In the language of our formulae
one just replaces u by −u in (and only in) both equations (9) and (10). No change occurs in
polynomial (12).

3. Pöschl–Teller potential

The Schrödinger equation (3) with the bell-shaped potential V (r) ∼ 1/cosh2 r is one of the
most popular exactly solvable models in quantum mechanics. Its applications range from
analyses of stability and quantization of solitons [34] to phenomenological studies in atomic
and molecular physics [35], chemistry [36], biophysics [37] and astrophysics [38]. Its appeal
involves solvability by different methods [27] as well as a remarkable role in scattering [2]. Its
bound-state wavefunctions represented by Jacobi polynomials are also encountered as super-
partners of a complex ‘scarf’ model [13].

Not too surprisingly, virtually all these applications lose their physical ground after
addition of the repulsive spike. Still, it is not too difficult to extend the exact solvability
itself to the latter potential, called, often, the Pöschl–Teller well [39]. The related Schrödinger
equation (3) must be confined to semi-axis r ∈ (0,∞) or appropriately regularized.
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3.1. Regularization

We may repeat that the impossibility of using the real V (PT) of equation (2) with A > B > 0
in more dimensions or on the whole axis in one dimension is felt to be unfortunate in
methodical considerations and in perturbation theory [40]. Singularities of the centrifugal
type are encountered in phenomenological models [28, 41] but, unfortunately, not many of
them are solvable [42].

In our present regularization of the singularity we shall not deform the straight integration
path at all. We shall rather proceed in a way inspired by the pioneering paper [6] where Buslaev
and Grecchi employed simply a constant downward shift of the whole coordinate axis,

r = x − iε x ∈ (−∞,∞). (13)

In a way similar to the oscillator V (BB)(x) = V (HO)(x − ic) = x2 − 2icx − c2 of [8] and to
its three-dimensional generalization [17] the meaning of the PT -symmetry degenerates here
to mere trivial invariance with respect to the simultaneous reflection x → −x and complex
conjugation i → −i. The shift (13) is the main source of regularization here. As long as
1/(x − iε)2 = (x + iε)2/(x2 + ε2)2 at any ε �= 0, the centrifugal term remains nicely bounded
in a way which is uniform with respect to x. Without any difficulties one is able to work with
similar centrifugal-like terms on the whole real line of x.

The same idea applies to the regularized Pöschl–Teller potential

V (RPT)(x) = V (PT)(x − iε) 0 < ε < π/2.

This potential is a simple function of the Lévai’s [27] variable g(r) = cosh 2r . As long as
g(x − iε) = cosh 2x cos 2ε− i sinh 2x sin 2ε, the new force is PT -symmetric on the real line
of x ∈ (−∞,∞),

V (RPT)(−x) = [V (RPT)(x)]∗.

Due to the estimates | sinh2(x − iε)|2 = sinh2 x cos2 ε + cosh2 x sin2 ε = sinh2 x + sin2 ε and
| cosh2(x− iε)|2 = sinh2 x + cos2 ε the regularity of V (RPT)(x) is guaranteed for any parameter
ε ∈ (0, π/2).

3.2. Solutions

In a way parallelling the preceding section the mere analytic continuation of the s-wave
bound states does not give the complete solution. One must return to the original differential
equation (3). There we may conveniently fix A + 1

2 = α > 0 and B − 1
2 = β > 0 and write(

− d2

dx2
+

β2 − 1
4

sinh2 r(x)
− α2 − 1

4

cosh2 r(x)

)
ψ(x) = Eψ(x) r(x) = x − iε. (14)

This is the Gauss differential equation

z(1 + z)ϕ′′(z) + [c + (a + b + 1)z]ϕ′(z) + abϕ(z) = 0 (15)

in the new variables

ψ(x) = zµ(1 + z)νϕ(z) z = sinh2 r(x)

using the suitable re-parametrizations

α2 = (2ν − 1
2 )

2 β2 = (2µ− 1
2 )

2

2µ + 1
2 = c 2µ + 2ν = a + b E = −(a − b)2.

In the new notation we have the wavefunctions

ψ(x) = sinhτβ+1/2[r(x)] coshσα+1/2[r(x)]ϕ[z(x)] (16)
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with the sign ambiguities τ = ±1 and σ = ±1 in 2µ = τβ + 1
2 and 2ν = σα+ 1

2 . This formula
contains the general solution of hypergeometric equation (15),

ϕ(z) = C12F1(a, b; c;−z) + C2z
1−c

2F1(a + 1− c, b + 1− c; 2− c;−z). (17)

The solution obeys the complex version of the Sturm–Liouville oscillation theorem [33]. In
the case of the discrete spectrum this means that we have to demand the termination of our
infinite hypergeometric series, suppressing its undesirable asymptotic growth at x →±∞.

In a deeper analysis let us first put C2 = 0. We may satisfy the termination condition by
the non-positive integer choice of b = −N . This implies that a = N + 1 + σα + τβ is real and
that our wavefunction may be made asymptotically (exponentially) vanishing under certain
conditions. Inspection of formula (16) recovers that the boundary condition ψ(±∞) = 0 will
be satisfied if and only if

1 � 2N + 1 � 2Nmax + 1 < −σα − τβ.

The closed Jacobi polynomial representation of the wavefunctions follows easily:

ϕ[z(x)] = C1
N !,(1 + τβ)

,(N + 1 + τβ)
P

(τβ,σα)

N [cosh 2r(x)].

The final insertions of parameters define the spectrum of energies,

E = −(2N + 1 + σα + τβ)2 < 0. (18)

Now we have to return to equation (17) once more. A careful analysis of the other possibility
C1 = 0 does not recover anything new. The same solution is obtained, with τ replaced by−τ .
We may keep C2 = 0 and mark the two independent solutions by the sign τ . Once we define
the maximal integers N(σ,τ)

max which are compatible with the inequality

2N(σ,τ)
max + 1 < −σα − τβ (19)

we obtain the constraint N � N
(σ,τ)
max . The set of our main quantum numbers is finite.

4. Bent contours and Hulthén potentials

In both our above examples (1) and (2) an overall PT -symmetry of the Hamiltonian is,
presumably, responsible for the existence of the real and discrete spectrum [8]. Cannata
et al [16] and Bender et al [43] were probably the first to notice that one of the various limits
δ → ∞ of the power-law models with ϕ → π/2 − O(1/δ) becomes, unexpectedly, exactly
solvable again, in terms of special Bessel functions. These observations attract attention to
strongly deformed contours. One possibility for their interpretation is the Liouvillean change
of variables [44].

4.1. The PT -symmetry preserving changes of variables

In the first step let us recollect that in the spirit of the old Liouville paper [45] the change of
the (real) coordinates (say, r ↔ ξ ) in the Schrödinger equation[

− d2

dr2
+ W(r)

]
χ(r) = −κ2χ(r) (20)

mediates a transition to a different potential. In terms of an invertible function r = r(ξ) which
possesses a few first derivatives r ′(ξ), r ′′(ξ), . . . we obtain the new bound state problem with
the new interaction

V (ξ)− E = [r ′(ξ)]2{W [r(ξ)] + κ2} +
3

4

[
r ′′(ξ)
r ′(ξ)

]2

− 1

2

[
r ′′′(ξ)
r ′(ξ)

]
(21)
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and normalizable wavefunctions

1(ξ) = χ [r(ξ)]√
r ′(ξ)

. (22)

In the Jacobi-polynomial context the Liouvillean changes of variables have been applied
systematically to all the Hermitian models (cf figure 5.1 in the review [15], or [46] for a
more detailed illustration). A similar exhaustive study is still missing for the PT -symmetric
models within the same class. Let us now try to partially fill the gap. For the sake of brevity
we shall restrict our attention to the PT -symmetric initial equation (20) with the Pöschl–Teller
potential

W(r) = β2 − 1
4

sinh2 r
− α2 − 1

4

cosh2 r
r = x − iε x ∈ (−∞,∞). (23)

Its normalizable bound states are proportional to the Jacobi polynomials,

χ(r) = sinhτβ+1/2 r coshσα+1/2 rP (τβ,σα)
n (cosh 2r)

at all the negative energies −κ2 < 0 such that

κ = κ(σ,τ)
n = −σα − τβ − 2n− 1 > 0.

These bound states are numbered by n = 0, 1, . . . , n(σ,τ)max and by the generalized parities
σ = ±1 and τ = ±1.

We may note that our initial PT -symmetric model (20) remains manifestly regular
provided only that its constant downward shift of the coordinates r = r(x) = x − iε remains
constrained to a finite interval, ε ∈ (0, π/2). In a key step of its present modification let us
now change the coordinates as follows:

sinh r(x)(ξ) = −ieiξ ξ = v − iu. (24)

This shifts and removes the singularity at r = 0 to infinity (u→ +∞). In an opposite direction,
one cannot proceed equally easily from a choice of a realistic V (ξ) to the re-constructed
coordinate r(ξ). This methodical asymmetry is due to the definition (21) containing the third
derivatives and, hence, being too complicated to solve. Still we are quite lucky with our purely
trial and error choice of equation (24). Firstly, the real line of x becomes mapped onto a
manifestly PT -symmetric curve ξ = v − iu in accordance with the compact and invertible
trigonometric rules

sinh x cos ε = eu sin v

cosh x sin ε = eu cos v

i.e. in such a way that

v = arctan

(
tanh x

tan ε

)
= v(x) ∈ (v(−∞), v(∞)) ≡

(
−π

2
+ ε,

π

2
− ε

)
u = u(x) = 1

2 ln(sinh2 x + sin2 ε).

Our path of ξ is a downward-bent arch which starts in its left imaginary minus infinity
and ends in its right imaginary minus infinity while its top lies at x = v = 0 and
−u = −u(0) = ln 1/ sin ε > 0. The top may move towards the singularity in a way mimicked
by the diminishing shift ε→ 0. Although the singularity originally occurred at the finite value
r → 0, it has now been removed upwards, i.e. in the direction of −u→ +∞.
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4.2. Consequences

The first consequence of our particular change of variables (24) is that it does not change
the asymptotics of the wavefunctions. As long as r ′(ξ) = i tanh r(ξ) the transition from
equations (20) to (3) introduces just an inessential phase factor in 1(ξ). This implies that
the normalizability (at a physical energy) as well as its violations (at all other energies not
belonging to the discrete spectrum) are both in a one-to-one correspondence.

The explicit relation between the old and new energies and couplings is not too
complicated. Patient computations reveal its closed form. With a bit of luck, the solution
proves to be non-numerical. The new form of the potential and of its binding energies is
derived by the mere insertion in equation (21),

V (ξ) = A

(1− e2iξ )2
+

B

1− e2iξ
E = κ2. (25)

At the imaginary ξ and vanishing A = 0 this interaction coincides with the Hulthén potential.
In the new formula for the energies one has to notice their positivity. This is extremely

interesting since the potential itself is asymptotically vanishing at both ends of its integration
path. One may immediately recollect that a similar paradox has already been observed in
a few other PT -symmetric models with an asymptotic decrease of the potential to minus
infinity [22, 47].

The exact solvability of our modified Hulthén potential is not yet guaranteed at all. A
critical point is that the new couplings depend on the old energies and, hence, on the discrete
quantum numbers n, σ and τ in principle. This could induce an undesirable state dependence
into our new potential. Vice versa, the closed solvability of the constraint which forbids this
state dependence will be equivalent to the solvability at last. A removal of this obstacle means
in effect a transfer of the state dependence (i.e. of the n-, σ - and τ -dependence) in

A = A(α) = 1− α2 C(= A + B) = κ2 − β2

from C to β. To this end, employing the known explicit form of κ we may rewrite

C = C(σ, τ, n) = (σα + 2n + 1)(σα + 2n + 1 + 2τβ). (26)

This formula is linear in τβ and, hence, its inversion is easy and defines the desirable state-
dependent quantity β = β(σ, τ, n) as an elementary function of the constant C. The new
energy spectrum acquires the closed form

E = E(σ, τ, n) = A + B +
1

4

[
σα + 2n + 1− A + B

σα + 2n + 1

]2

. (27)

Our construction is complete. The range of the quantum numbers n, σ and τ remains the same
as above.

5. Discussion

5.1. Spectrum of the PT -symmetric Eckart model

The new spectrum of energies seems phenomenologically appealing. The separate N th
energy remains negative if and only if the imaginary coupling remains sufficiently weak,
β2 < (A−N−1)4. Vice versa, the highest energies may become positive, with E = E(Nmax)

growing extremely quickly whenever the value of the coupling A approaches its integer lower
estimate 1 +Nmax from above. In this way, even a weak PT -symmetric force V (Eck)(x) is able
to produce a high-lying normalizable excitation. This feature does not seem to be connected
to the presence of the singularity as it closely parallels the similar phenomenon observed for
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the PT -symmetric Rosen–Morse oscillator which remains regular at the origin [14]. Also, in
a way resembling harmonic oscillators the distance of levels in our model is safely bounded
from below. Abbreviating D = A−N − 1 = Aeffective > 0 its easy estimate

EN − EN−1 = (2D + 1)

(
1 +

β2

D2(D + 1)2

)
> 1

(useful, say, in perturbative considerations) may readily be improved to EN −EN−1 > β2/D2

at small D � 1, to EN −EN−1 > 2D at large D � 1 and, in general, to an algebraic precise
estimate obtainable, say, via MAPLE [48].

Let us emphasize in conclusion that the formulae we obtained are completely different
from the usual Hermitian s-wave results as derived, say, by Lévai [27]. He had to start from
the regularity at the origin which implied an opposite sign in equation (8). This had to end up
with the constraint B > 0. Moreover, the size of B limited the number of bound states.

In the present PT -symmetric setting, a few paradoxes emerge in this comparison. Some
of them may be directly related to the repulsive real core in our V (Eck)(x) with imaginary
B. Thus, one may notice that the increase of the real repulsion lowers the N th energy. In
connection with that, the number of levels grows with the increase of coupling A. In effect,
the new bound-state levels emerge as decreasing from the positive infinity(!). At the same
time, the presence of the imaginary B = iβ shifts the whole spectrum upwards in precisely
the manner known from non-singular models.

5.2. Paradoxes in the Pöschl–Teller case

Let us now compare our final result (18) with the known ε = 0 formulae for s-waves [27].
An additional physical boundary condition must be imposed in the latter singular limit. This
condition fixes the unique pair σ = −1 and τ = +1. Thus, the set of s-wave energy levels
EN is not empty if and only if α − β > 1. In contrast, all our ε > 0 potentials acquire a
uniform bound |V (RPT)(x)| < const <∞. Due to their regularity, no additional constraint is
needed. Our new spectrum E

(σ,τ)
N becomes richer. For sufficiently strong couplings it proves

to be composed of three separate parts,

E
(−,−)
N < 0 0 � N � N(−,−)

max α + β > 1

E
(−,+)
N < 0 0 � N � N(−,+)

max α > β + 1

E
(+,−)
N < 0 0 � N � N(+,−)

max β > α + 1.

(28)

The first one is non-empty at A + B > 1 (with our above separate conventions A > − 1
2 and

B > 1
2 ). Concerning the latter two alternative sets, they may exist at A > B or at B > A + 2,

respectively. We may summarize that in a parallel to the PT -symmetrized harmonic oscillator
of [17] we have the N

(−,+)
max + 1 quasi-odd or ‘perturbed’, analytically continued s-wave states

(with a nodal zero near the origin) complemented by certain additional solutions.
In the first failure of a complete analogy the number N(−,−)

max + 1 of our quasi-even states
proves systematically higher than N

(−,+)
max + 1, especially at the larger ‘repulsion’ β � 1.

This is a particular paradox, strengthened by the existence of another quasi-odd family
which behaves very non-perturbatively. Its members (with the ground state ψ

(+,−)
0 (x) =

coshA+1[r(x)] sinh1−B[r(x)] etc) do not seem to have any s-wave analogue. They are formed
at the prevalent repulsionB > A+2 which is even more counter-intuitive. The exact solvability
of our example enables us to understand this apparent paradox clearly. In a way characteristic
of many PT -symmetric systems some of the states are bound by an antisymmetric imaginary
well. A successful description of its perturbative forms V (x) = ωx2 + iλx3 [7, 10] carries
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numerous analogies with the real and symmetric V (x) = ωx2 + λx4. A similar mechanism
creates the states with (σ, τ ) = (+,−) in the present example.

A significant novelty of our new model V (RPT)(x) lies in the dominance of its imaginary
component at short distances, x ≈ 0. Indeed, we may expand our force to first order in the
small ε > 0. This gives the approximation

1

sinh2(x − iε)
= sinh2(x + iε)

(sinh2 x + sin2 ε)2
= 1

sinh2 x
+ 2iε

cosh x

sinh3 x
+ O(ε2). (29)

We see immediately the clear prevalence of the imaginary part at short distances, especially at
all the negligible A = O(ε2).

An alternative approach to the above paradox may be mediated by a sudden transition
from the domain of a small ε ≈ 0 to the opposite extreme with ε ≈ π/2. This is a shift which
changes cosh x into sinh x and vice versa. It intertwines the role of α and β as a strength of the
smooth attraction and of the singular repulsion, respectively. The perturbative/non-perturbative
interpretation of both our quasi-odd subsets of states becomes mutually interchanged near both
the extremes of the parameter ε.

The dominant part (29) of our present model leaves its asymptotics comparatively
irrelevant. In contrast to many other PT -symmetric models as available in the current literature
our potential vanishes asymptotically,

V (RPT)(x)→ 0 x →±∞.

An introduction and analysis of continuous spectra in the PT -symmetric quantum mechanics
seems to be rendered possible at positive energies. This question will be left open here.

In the same spirit we may also touch the problem of the possible breakdown of the
PT -symmetry. In our present solvable example the violation of the PT -symmetry is easily
mimicked by the complex choice of the couplings α and β. Due to our closed formulae the
energies will still stay real, provided only that Im (σα + τβ) = 0.

5.3. Transition to the Hulthén model

In the light of our new results we may now split the whole family of the exactly solvable
PT -symmetric models which contain a strong singularity in the two distinct categories. The
first one ‘lives’ on the real line and may be represented or illustrated not only by the popular
Laguerre-solvable harmonic oscillator [17] but also by both our present Jacobi-solvable forces.
The second category requires a arch-shaped path of integration which lies confined within a
narrow vertical strip. It also involves both the Laguerre and Jacobi solvable subsets. The
former may be represented by the complex Morse model of [12] and by the Coulomb force
with a complex charge [18]. Our present new Hulthén example offers their first Jacobi-solvable
counterpart. The parallels may be illustrated by the following picture:

symmetric
V (HO)(r) [17]

←→ symmetric
V (PT )(r) [49]

� r = −i exp i x � sinh r = −i exp i x

periodic
V (M)(x) [12]

←→ periodic
V (H)(x) [50]
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where the vertical correspondence originates from the changes of variables. One notices the
similarities in the (symmetric or periodic) form of the functions V as well as the differences
in the straight-line or bent-curve shapes of the domains r = r(t) ∈ C or x = x(t) ∈ C,
respectively.

The less formal difference between the two categories may be also sought in their
immediate physical relevance. Applications of the former class may be facilitated by a limiting
transition which is able to return them on the usual real line. In contrast, the second category
may rather find its most useful place in the methodical considerations concerning, e.g., field
theories and the mechanisms of parity breaking [4]. Within quantum mechanics itself the
second category might also parallel the studies of the ‘smoothed’ square wells in a non-
Hermitian setting [16, 43].

In conclusion, let us recollect that the PT -symmetry of a Hamiltonian replaces and, in a
way, generalizes its usual Hermiticity. This is the main reason why there exists an unexplored
space for new solvable models. In their context, an example with an ‘intermediate’, hyperbola-
shaped arc of coordinates remains still to be discovered. Up to now this type of contour has
only been encountered in the ‘quasi-solvable’ (i.e. partially numerical) model of [22].
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